Closed conformal Killing-Yano tensor and geodesic integrability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41025204
(http://iopscience.iop.org/1751-8121/41/2/025204)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.148
The article was downloaded on 03/06/2010 at 06:48

Please note that terms and conditions apply.

Closed conformal Killing-Yano tensor and geodesic integrability

Tsuyoshi Houri ${ }^{1}$, Takeshi Oota ${ }^{2}$ and Yukinori Yasui ${ }^{1}$
${ }^{1}$ Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
${ }^{2}$ Osaka City University Advanced Mathematical Institute (OCAMI), 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
E-mail: houri@sci.osaka-cu.ac.jp, toota@sci.osaka-cu.ac.jp and yasui@sci.osaka-cu.ac.jp

Received 5 September 2007, in final form 19 November 2007
Published 19 December 2007
Online at stacks.iop.org/JPhysA/41/025204

Abstract

Assuming the existence of a single rank-2 closed conformal Killing-Yano tensor with a certain symmetry we show that there exists mutually commuting rank-2 Killing tensors and Killing vectors. We also discuss the condition of separation of variables for the geodesic Hamilton-Jacobi equations.

PACS numbers: $02.40 . \mathrm{Ky}, 04.70 . \mathrm{Bw}$

1. Introduction

Recently, it has been shown that the geodesic motion in the Kerr-NUT-de Sitter spacetime is integrable for all dimensions [1-6]. Indeed, the constants of motion that are in involution can be explicitly constructed from a rank-2 closed conformal Killing-Yano (CKY) tensor. In this paper, we answer the question raised in [5] under which general assumptions a CKY tensor implies the complete integrability of geodesic equation. We assume the existence of a single rank-2 closed CKY tensor with a certain symmetry for the D-dimensional spacetime M with a metric g. It turns out that such a spacetime admits mutually commuting k rank- 2 Killing tensors and k Killing vectors. Here we put $D=2 k$ for even D, and $D=2 k-1$ for odd D. Although the existence of the commuting Killing tensors was shown in [5, 6], we reproduce it more directly. We also discuss the condition of separation of variables for the geodesic Hamilton-Jacobi equations using the result given by Benenti-Francaviglia [7] and Kalnins-Miller [8] (see also [9]).

2. Assumptions and main results

A two-form

$$
\begin{equation*}
h=\frac{1}{2} h_{a b} \mathrm{~d} x^{a} \wedge \mathrm{~d} x^{b}, \quad h_{a b}=-h_{b a} \tag{2.1}
\end{equation*}
$$

is called a conformal Killing-Yano (CKY) tensor if it satisfies

$$
\begin{equation*}
\nabla_{a} h_{b c}+\nabla_{b} h_{a c}=2 \xi_{c} g_{a b}-\xi_{a} g_{b c}-\xi_{b} g_{a c} \tag{2.2}
\end{equation*}
$$

The vector field ξ_{a} is called the associated vector of $h_{a b}$, which is given by

$$
\begin{equation*}
\xi_{a}=\frac{1}{D-1} \nabla^{b} h_{b a} . \tag{2.3}
\end{equation*}
$$

In the following we assume

$$
\begin{equation*}
\text { (a1) } \quad \mathrm{d} h=0, \quad(a 2) \quad \mathcal{L}_{\xi} g=0, \quad \text { (a3) } \quad \mathcal{L}_{\xi} h=0 \tag{2.4}
\end{equation*}
$$

Assumption (a1) means that ($D-2$)-form $f=* h$ is a Killing-Yano (KY) tensor,

$$
\begin{equation*}
\nabla_{\left(a_{1}\right.} f_{\left.a_{2}\right) a_{3} \cdots a_{D-1}}=0 \tag{2.5}
\end{equation*}
$$

Note that equation (2.2) together with (a1) is equivalent to

$$
\begin{equation*}
\nabla_{a} h_{b c}=\xi_{c} g_{a b}-\xi_{b} g_{a c} . \tag{2.6}
\end{equation*}
$$

It was shown in [10] that the associated vector ξ satisfies

$$
\begin{equation*}
\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}=\frac{1}{D-2}\left(R_{a}{ }^{c} h_{b c}+R_{b}{ }^{c} h_{a c}\right) \tag{2.7}
\end{equation*}
$$

where $R_{a b}$ is a Ricci tensor. If M is Einstein, i.e. $R_{a b}=\Lambda g_{a b}$, then

$$
\begin{equation*}
\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}=0 \tag{2.8}
\end{equation*}
$$

Thus, any Einstein space satisfies assumption (a2) [10]. According to [5], we define $2 j$-forms $h^{(j)}(j=0, \ldots, k-1)$:

$$
\begin{equation*}
h^{(j)}=\underbrace{h \wedge h \wedge \cdots \wedge h}_{j}=\frac{1}{(2 j)!} h_{a_{1} \ldots a_{2 j}}^{(j)} \mathrm{d} x^{a_{1}} \wedge \cdots \wedge \mathrm{~d} x^{a_{2 j}}, \tag{2.9}
\end{equation*}
$$

where the components are written as

$$
\begin{equation*}
h_{a_{1} \ldots a_{2 j}}^{(j)}=\frac{(2 j)!}{2^{j}} h_{\left[a_{1} a_{2}\right.} h_{a_{3} a_{4}} \cdots h_{\left.a_{2 j-1} a_{2}\right]} . \tag{2.10}
\end{equation*}
$$

Since the wedge product of the two CKY tensors is again a CKY tensor [5], $h^{(j)}$ are closed CKY tensors, and so $f^{(j)}=* h^{(j)}$ are KY tensors. Explicitly, we have

$$
\begin{equation*}
f^{(j)}=* h^{(j)}=\frac{1}{(D-2 j)!} f_{a_{1} \ldots a_{D-2 j}}^{(j)} \mathrm{d} x^{a_{1}} \wedge \cdots \wedge \mathrm{~d} x^{a_{D-2 j}} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{a_{1} \ldots a_{D-2 j}}^{(j)}=\frac{1}{(2 j)!} \varepsilon^{b_{1} \ldots b_{2 j}}{ }_{a_{1} \ldots a_{D-2 j}} h_{b_{1} \ldots b_{2 j}}^{(j)} . \tag{2.12}
\end{equation*}
$$

Given these KY tensors, we can construct the rank-2 Killing tensors $K^{(j)}$ obeying the equation $\nabla_{(a} K_{b c)}^{(j)}=0$:

$$
\begin{equation*}
K_{a b}^{(j)}=\frac{1}{(D-2 j-1)!(j!)^{2}} f_{a c_{1} \ldots c_{D-2 j-1}}^{(j)} f_{b}^{(j) c_{1} \ldots c_{D-2 j-1}} \tag{2.13}
\end{equation*}
$$

From (a2) we have $\mathcal{L}_{\xi} * h^{(j)}=* \mathcal{L}_{\xi} h^{(j)}$ and hence assumption (a3) yields

$$
\begin{equation*}
\mathcal{L}_{\xi} h^{(j)}=0, \quad \mathcal{L}_{\xi} f^{(j)}=0, \quad \mathcal{L}_{\xi} K^{(j)}=0 \tag{2.14}
\end{equation*}
$$

We also immediately obtain from (2.6)

$$
\begin{equation*}
\nabla_{\xi} h^{(j)}=0, \quad \nabla_{\xi} f^{(j)}=0, \quad \nabla_{\xi} K^{(j)}=0 \tag{2.15}
\end{equation*}
$$

Let us define the vector fields $\eta^{(j)}$ by [11, 12]

$$
\begin{equation*}
\eta_{a}^{(j)}=K^{(j)}{ }_{a}{ }^{b} \xi_{b} . \tag{2.16}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\nabla_{(a} \eta_{b)}^{(j)}=\frac{1}{2} \mathcal{L}_{\xi} K_{a b}^{(j)}-\nabla_{\xi} K_{a b}^{(j)} \tag{2.17}
\end{equation*}
$$

which vanishes by (2.14) and (2.15), i.e. $\eta^{(j)}$ are Killing vectors.
Theorem 1 was proved in $[5,6]$.
Theorem 1. Under (a1) Killing tensors $K^{(i)}$ are mutually commuting,

$$
\left[K^{(i)}, K^{(j)}\right]_{S}=0
$$

The bracket $[,]_{S}$ represents a symmetric Schouten bracket. The equation can be written as

$$
\begin{equation*}
K_{d(a}^{(i)} \nabla^{d} K_{b c)}^{(j)}-K_{d(a}^{(j)} \nabla^{d} K_{b c)}^{(i)}=0 \tag{2.18}
\end{equation*}
$$

Adding assumptions (a2) and (a3) we prove

Theorem 2.

$$
\mathcal{L}_{\eta^{(i)}} h=0 .
$$

Corollary. Killing vectors $\eta^{(i)}$ and Killing tensors $K^{(j)}$ are mutually commuting,

$$
\left[\eta^{(i)}, K^{(j)}\right]_{S}=0, \quad\left[\eta^{(i)}, \eta^{(j)}\right]=0
$$

3. Proof of theorems $\mathbf{1 , 2}$

Let $H, Q:=-H^{2}, K^{(j)}$ be matrices with elements

$$
\begin{equation*}
H^{a}{ }_{b}=h^{a}{ }_{b}, \quad Q^{a}{ }_{b}=-h^{a}{ }_{c} h^{c}{ }_{b}, \quad\left(K^{(j)}\right)^{a}{ }_{b}=K^{(j) a}{ }_{b} \tag{3.1}
\end{equation*}
$$

The generating function of $K^{(j)}$ can be read off from [5]

$$
\begin{equation*}
K_{a b}(\beta)=\sum_{j=0}^{k-1} K_{a b}^{(j)} \beta^{j}=\operatorname{det}^{1 / 2}(I+\beta Q)\left[(I+\beta Q)^{-1}\right]_{a b} \tag{3.2}
\end{equation*}
$$

Here $k=[(D+1) / 2]$. Note that

$$
\begin{align*}
& 2 \operatorname{det}^{1 / 2}(I+\beta Q)\left[(I+\beta Q)^{-1}\right]^{a}{ }_{b} \\
& \quad=\operatorname{det}(I+\sqrt{\beta} H)\left[(I+\sqrt{\beta} H)^{-1}\right]^{a}{ }_{b}+\operatorname{det}(I-\sqrt{\beta} H)\left[(I-\sqrt{\beta} H)^{-1}\right]^{a}{ }_{b} . \tag{3.3}
\end{align*}
$$

Since $\operatorname{det}(I \pm \sqrt{\beta} H)\left[(I \pm \sqrt{\beta} H)^{-1}\right]^{a}{ }_{b}$ is a cofactor of the matrix $I \pm \sqrt{\beta} H$, (3.2) is indeed a polynomial of β of degree $[(D-1) / 2]$.

For simplicity, let us define a matrix $S(\beta)$ by

$$
\begin{equation*}
S(\beta):=(I+\beta Q)^{-1} \tag{3.4}
\end{equation*}
$$

Using (2.6), we have
$\nabla_{a} \operatorname{det}^{1 / 2}(I+\beta Q)=-2 \beta \xi_{d}[H S(\beta)]^{d}{ }_{a} \operatorname{det}^{1 / 2}(I+\beta Q)$,

$$
\begin{align*}
\nabla_{a} S_{b c}(\beta)=\beta & S_{b a}(\beta) \xi^{d}[H S(\beta)]_{d c}-\beta S_{b d}(\beta) \xi^{d}[H S(\beta)]_{a c} \tag{3.5}\\
& +\beta[H S(\beta)]_{b a} \xi^{d} S_{d c}(\beta)-\beta[H S(\beta)]_{b d} \xi^{d} S_{a c}(\beta) . \tag{3.6}
\end{align*}
$$

Combining these relations, we have

$$
\begin{equation*}
\nabla_{a} K_{b c}(\beta)=\operatorname{det}^{1 / 2}(I+\beta Q) \xi^{d} X_{a b c ; d}(\beta) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{gather*}
X_{a b c ; d}(\beta)=2 \beta[H S(\beta)]_{a d} S_{b c}(\beta)-\beta[H S(\beta)]_{b d} S_{c a}(\beta)-\beta[H S(\beta)]_{c d} S_{a b}(\beta) \\
+\beta S_{b d}(\beta)[H S(\beta)]_{c a}+\beta S_{c d}(\beta)[H S(\beta)]_{b a} . \tag{3.8}
\end{gather*}
$$

Then with the help of (3.7), it is easy to check that the following relations hold:

$$
\begin{equation*}
\nabla_{(a} K_{b c)}(\beta)=0 \tag{3.9}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\nabla_{(a} K_{b c)}^{(j)}=0 \tag{3.10}
\end{equation*}
$$

Proof of theorem 1. In terms of generating function, theorem 1 (2.18) can be written as follows:

$$
\begin{equation*}
K_{e(a}\left(\beta_{1}\right) \nabla^{e} K_{b c)}\left(\beta_{2}\right)-K_{e(a}\left(\beta_{2}\right) \nabla^{e} K_{b c)}\left(\beta_{1}\right)=0 \tag{3.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
F_{a b c}\left(\beta_{1}, \beta_{2}\right):=\frac{K_{e a}\left(\beta_{1}\right) \nabla^{e} K_{b c}\left(\beta_{2}\right)}{\operatorname{det}^{1 / 2}\left(I+\beta_{1} Q\right) \operatorname{det}^{1 / 2}\left(I+\beta_{2} Q\right)} \tag{3.12}
\end{equation*}
$$

(3.11) is equivalent to

$$
\begin{equation*}
F_{(a b c)}\left(\beta_{1}, \beta_{2}\right)-F_{(a b c)}\left(\beta_{2}, \beta_{1}\right)=0 . \tag{3.13}
\end{equation*}
$$

Using the explicit form of $\nabla^{e} K_{b c}\left(\beta_{2}\right)$, we have

$$
\begin{align*}
F_{a b c}\left(\beta_{1}, \beta_{2}\right)= & \beta_{2} \xi^{d} S_{e a}\left(\beta_{1}\right) \\
& \times\left(2\left[H S\left(\beta_{2}\right)\right]_{e d} S_{b c}\left(\beta_{2}\right)-\left[H S\left(\beta_{2}\right)\right]_{b d} S_{c}^{e}\left(\beta_{2}\right)-\left[H S\left(\beta_{2}\right)\right]_{c d} S^{e}{ }_{b}\left(\beta_{2}\right)\right. \\
& \left.+S_{b d}\left(\beta_{2}\right)\left[H S\left(\beta_{2}\right)\right]_{c}^{e}+S_{c d}\left(\beta_{2}\right)\left[H S\left(\beta_{2}\right)\right]_{b}^{e}\right) \\
= & \beta_{2} \xi^{d}\left(2\left[H S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{a d} S_{b c}\left(\beta_{2}\right)\right. \\
& -\left[H S\left(\beta_{2}\right)\right]_{b d}\left[S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{c a}-\left[H S\left(\beta_{2}\right)\right]_{c d}\left[S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{a b} \\
& \left.+S_{b d}\left(\beta_{2}\right)\left[H S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{c a}+S_{c d}\left(\beta_{2}\right)\left[H S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{b a}\right) . \tag{3.14}
\end{align*}
$$

Then
$F_{(a b c)}\left(\beta_{1}, \beta_{2}\right)=2 \beta_{2} \xi^{d}\left(S_{(b c}\left(\beta_{2}\right)\left[H S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{a) d}-\left[S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{(b c}\left[H S\left(\beta_{2}\right)\right]_{a) d}\right)$.
Note that

$$
\begin{equation*}
\beta_{2} S\left(\beta_{2}\right)-\beta_{1} S\left(\beta_{1}\right)=\left(\beta_{2}-\beta_{1}\right) S\left(\beta_{1}\right) S\left(\beta_{2}\right) \tag{3.16}
\end{equation*}
$$

Then

$$
\begin{aligned}
F_{(a b c)}\left(\beta_{1}, \beta_{2}\right)-F_{(a b c)}\left(\beta_{2}, \beta_{1}\right)= & 2\left(\beta_{2}-\beta_{1}\right) \xi^{d}\left(\left[S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{(b c}\left[H S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{a) d}\right. \\
& \left.-\left[S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{(b c}\left[H S\left(\beta_{1}\right) S\left(\beta_{2}\right)\right]_{a) d}\right) \\
= & 0 .
\end{aligned}
$$

This completes the proof of theorem 1.
Let $\eta_{a}(\beta)$ be the generating function of $\eta_{a}^{(j)}$:

$$
\begin{equation*}
\eta_{a}(\beta)=\sum_{j=0}^{k-1} \eta_{a}^{(j)} \beta^{j}=K_{a b}(\beta) \xi^{b} \tag{3.17}
\end{equation*}
$$

Proof of theorem 2. In terms of the generating function (3.17), the theorem 2 is equivalent to

$$
\begin{equation*}
\mathcal{L}_{\eta(\beta)} h_{a b}=0 . \tag{3.18}
\end{equation*}
$$

The left-hand side is

$$
\begin{equation*}
\mathcal{L}_{\eta(\beta)} h_{a b}=\eta^{c}(\beta) \nabla_{c} h_{a b}+h_{c b} \nabla_{a} \eta^{c}(\beta)+h_{a c} \nabla_{b} \eta^{c}(\beta) . \tag{3.19}
\end{equation*}
$$

Using (2.6), the first term on the right-hand side of (3.19) becomes

$$
\begin{equation*}
\eta^{c}(\beta) \nabla_{c} h_{a b}=\xi_{b} \eta_{a}(\beta)-\xi_{a} \eta_{b}(\beta) \tag{3.20}
\end{equation*}
$$

Let us examine the second and third terms.

$$
\begin{align*}
U_{a b}(\beta): & =h_{c b} \nabla_{a} \eta^{c}(\beta)+h_{a c} \nabla_{b} \eta^{c}(\beta) \\
& =h_{c b} \nabla_{a}\left(K^{c}{ }_{d}(\beta) \xi^{d}\right)+h_{a c} \nabla_{b}\left(K_{d}^{c}(\beta) \xi^{d}\right) \\
& =[K(\beta) H]_{d b} \nabla_{a} \xi^{d}+[K(\beta) H]_{a d} \nabla_{b} \xi^{d}+\xi^{d}\left(h_{c b} \nabla_{a} K_{d}^{c}(\beta)+h_{a c} \nabla_{b} K_{d}^{c}(\beta)\right) . \tag{3.21}
\end{align*}
$$

Note that
$[K(\beta) H]_{d b} \nabla_{a} \xi^{d}+[K(\beta) H]_{a d} \nabla_{b} \xi^{d}=\mathcal{L}_{\xi}[K(\beta) H]_{a b}-\nabla_{\xi}[K(\beta) H]_{a b}=0$.
Here we have used (2.14) and (2.15).
Let

$$
\begin{equation*}
V_{a b}(\beta):=\frac{\xi^{d} h_{a c} \nabla_{b} K_{d}^{c}(\beta)}{\operatorname{det}^{1 / 2}(I+\beta Q)} \tag{3.23}
\end{equation*}
$$

Then
$U_{a b}(\beta)=\operatorname{det}^{1 / 2}(I+\beta Q)\left(V_{a b}(\beta)-V_{b a}(\beta)\right)=2 \operatorname{det}^{1 / 2}(I+\beta Q) V_{[a b]}(\beta)$.
Using (3.7), we have
$V_{a b}(\beta)=\beta \xi^{d} \xi^{f}\left\{[H S(\beta)]_{a d}[H S(\beta)]_{b f}-S_{d f}[Q S(\beta)]_{a b}+[Q S(\beta)]_{a d} S_{b f}(\beta)\right\}$,
$2 V_{[a b]}(\beta)=\beta \xi^{d} \xi^{f}\left\{[Q S(\beta)]_{a d} S_{b f}(\beta)-S_{a d}(\beta)[Q S(\beta)]_{b f}\right\}$.
Note that

$$
\begin{equation*}
\beta Q S(\beta)=I-S(\beta) \tag{3.27}
\end{equation*}
$$

Then
$2 V_{[a b]}(\beta)=\beta \xi^{d} \xi^{f}\left\{g_{a d} S_{b f}(\beta)-S_{a d}(\beta) g_{b f}\right\}=\xi_{a} S_{b f}(\beta) \xi^{f}-\xi_{b} S_{a d}(\beta) \xi^{d}$.
Therefore

$$
\begin{equation*}
U_{a b}(\beta)=\xi_{a} \eta_{b}(\beta)-\xi_{b} \eta_{a}(\beta) \tag{3.29}
\end{equation*}
$$

Adding (3.20) and (3.29), we have

$$
\begin{equation*}
\mathcal{L}_{\eta(\beta)} h_{a b}=0 . \tag{3.30}
\end{equation*}
$$

This completes the proof of theorem 2.
The first relation of corollary is equivalent to

$$
\begin{equation*}
\mathcal{L}_{\eta^{(i)}} K^{(j)}=0 \tag{3.31}
\end{equation*}
$$

which immediately follows from theorem 2.
The second relation of corollary is equivalent to

$$
\begin{equation*}
\mathcal{L}_{\eta^{(i)}} \eta^{(j)}=0 . \tag{3.32}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \mathcal{L}_{\xi} \xi=[\xi, \xi]=0, \tag{3.33}\\
& \begin{aligned}
\mathcal{L}_{\xi} \eta^{(j) a} & =\mathcal{L}_{\xi}\left(K^{(j) a}{ }_{b} \xi^{b}\right) \\
& =\left(\mathcal{L}_{\xi} K^{(j) a}{ }_{b}\right) \xi^{b}+K^{(j) a}{ }_{b}\left(\mathcal{L}_{\xi} \xi^{b}\right) \\
& =0 .
\end{aligned}
\end{align*}
$$

Here we have used (2.14) and (3.33). Then

$$
\begin{equation*}
\mathcal{L}_{\eta^{(j)}} \xi=\left[\eta^{(j)}, \xi\right]=-\mathcal{L}_{\xi} \eta^{(j)}=0 . \tag{3.35}
\end{equation*}
$$

Now, using this relation and (3.31), we easily see that

$$
\begin{align*}
\mathcal{L}_{\eta^{(i)}} \eta^{(j) a} & =\mathcal{L}_{\eta^{(i)}}\left(K^{(j) a}{ }_{b} \xi^{b}\right) \\
& =\left(\mathcal{L}_{\eta^{(i)}} K^{(j) a}{ }_{b}\right) \xi^{b}+K^{(j) a}{ }_{b}\left(\mathcal{L}_{\eta^{(i)}} \xi^{b}\right) \\
& =0 . \tag{3.36}
\end{align*}
$$

This completes the proof of corollary.

4. Separation of variables in the Hamilton-Jacobi equation

A geometric characterization of the separation of variables in the geodesic Hamilton-Jacobi equation was given by Benenti-Francaviglia [7] and Kalnins-Miller [8]. Here, we use the following result in [8].

Theorem. Suppose there exists a N-dimensional vector space \mathcal{A} of rank-2 Killing tensors on D-dimensional space (M, g). Then the geodesic Hamilton-Jacobi equation has a separable coordinate system if and only if the following conditions hold ${ }^{1}$:
(i) $[A, B]_{S}=0$ for each $A, B \in \mathcal{A}$.
(ii) There exist $(D-n)$-independent simultaneous eigenvectors $X^{(a)}$ for every $A \in \mathcal{A}$.
(iii) There exist n-independent commuting Killing vectors $Y^{(\alpha)}$.
(iv) $\left[A, Y^{(\alpha)}\right]_{S}=0$ for each $A \in \mathcal{A}$.
(v) $N=\left(2 D+n^{2}-n\right) / 2$.
(vi) $g\left(X^{(a)}, X^{(b)}\right)=0$ if $1 \leqslant a<b \leqslant D-n$, and $g\left(X^{(a)}, Y^{(\alpha)}\right)=0$ for $1 \leqslant a \leqslant D-n$, $D-n+1 \leqslant \alpha \leqslant D$.

We assume that the Killing tensors $K^{(j)}$ and $K^{(i j)}=\eta^{(i)} \otimes \eta^{(j)}+\eta^{(j)} \otimes \eta^{(i)}$ given in section 2 form a basis for \mathcal{A}. Note that in the odd-dimensional case the last Killing Yano tensor $f^{(k-1)}$ is a Killing vector, and hence the corresponding Killing tensor $K^{(k-1)} \propto f^{(k-1)} f^{(k-1)}$ is reducible [5]. Then, it is easy to see that conditions (1)-(6) hold. Indeed, the relation $K^{(i)} K^{(j)}=K^{(j)} K^{(i)}$ implies that there exist simultaneous eigenvectors $X^{(a)}$ for $K^{(i)}$ satisfying conditions (2) and (6). Other conditions are direct consequences of theorem 1 and corollary.

5. Example

Finally, we describe the Kerr-NUT-de Sitter metric as an example, which was fully studied in $[1-6,13,14]$. The D-dimensional metric takes the form [13]:

[^0](a) $D=2 n$
\[

$$
\begin{equation*}
g=\sum_{\mu=1}^{n} \frac{\mathrm{~d} x_{\mu}^{2}}{Q_{\mu}}+\sum_{\mu=1}^{n} Q_{\mu}\left(\sum_{k=0}^{n-1} A_{\mu}^{(k)} \mathrm{d} \psi_{k}\right)^{2} \tag{5.1}
\end{equation*}
$$

\]

(b) $D=2 n+1$

$$
\begin{equation*}
g=\sum_{\mu=1}^{n} \frac{\mathrm{~d} x_{\mu}^{2}}{Q_{\mu}}+\sum_{\mu=1}^{n} Q_{\mu}\left(\sum_{k=0}^{n-1} A_{\mu}^{(k)} \mathrm{d} \psi_{k}\right)^{2}+S\left(\sum_{k=0}^{n} A^{(k)} \mathrm{d} \psi_{k}\right)^{2} \tag{5.2}
\end{equation*}
$$

The functions Q_{μ} are given by

$$
\begin{equation*}
Q_{\mu}=\frac{X_{\mu}}{U_{\mu}}, \quad U_{\mu}=\prod_{\substack{\nu=1 \\(\nu \neq \mu)}}^{n}\left(x_{\mu}^{2}-x_{\nu}^{2}\right) \tag{5.3}
\end{equation*}
$$

where X_{μ} is a function depending only on x_{μ} and

$$
\begin{equation*}
A_{\mu}^{(k)}=\sum_{\substack{1 \leqslant v_{1}<\cdots<v_{k} \leqslant n \\\left(v_{i} \neq \mu\right)}} x_{v_{1}}^{2} x_{v_{2}}^{2} \cdots x_{v_{k}}^{2}, \quad A^{(k)}=\sum_{1 \leqslant v_{1}<\cdots<v_{k} \leqslant n} x_{v_{1}}^{2} x_{v_{2}}^{2} \cdots x_{v_{k}}^{2}, \quad S=\frac{c}{A^{(n)}} \tag{5.4}
\end{equation*}
$$

with a constant c. The CKY tensor is written as [2]

$$
\begin{equation*}
h=\frac{1}{2} \sum_{k=0}^{n-1} \mathrm{~d} A^{(k+1)} \wedge \mathrm{d} \psi_{k} \tag{5.5}
\end{equation*}
$$

with the associated vector $\xi=\partial / \partial \psi_{0}$. Assumptions (a1), (a2) and (a3) are clearly satisfied. The commuting Killing tensors $K^{(j)}$ and Killing vectors $\eta^{(j)}$ are calculated as [2, 3]

$$
\begin{align*}
& K^{(j)}=\sum_{\mu=1}^{n} A_{\mu}^{(j)}\left(\mathrm{e}^{\mu} \mathrm{e}^{\mu}+\mathrm{e}^{\mu+n} \mathrm{e}^{\mu+n}\right)+\epsilon A^{(j)} \mathrm{e}^{2 n+1} \mathrm{e}^{2 n+1} \tag{5.6}\\
& \eta^{(j)}=\frac{\partial}{\partial \psi_{j}}, \tag{5.7}
\end{align*}
$$

where $\epsilon=0$ for $D=2 n$ and 1 for $D=2 n+1$. The 1 -forms $\left\{\mathrm{e}^{\mu}, \mathrm{e}^{\mu+n}, \mathrm{e}^{2 n+1}\right\}$ are orthonormal bases defined by
$\mathrm{e}^{\mu}=\frac{\mathrm{d} x_{\mu}}{\sqrt{Q_{\mu}}}, \quad \mathrm{e}^{\mu+n}=\sqrt{Q_{\mu}}\left(\sum_{k=0}^{n-1} A_{\mu}^{(k)} \mathrm{d} \psi_{k}\right), \quad \mathrm{e}^{2 n+1}=\sqrt{S}\left(\sum_{k=0}^{n} A^{(k)} \mathrm{d} \psi_{k}\right)$.

Note added. In the successive paper [15], we found that a single CKY tensor satisfying assumptions (a1), (a2) and (a3) leads inevitably to the Kerr-NUT-de Sitter spacetime.

Acknowledgments

This work is supported by the 21 COE program 'Construction of wide-angle mathematical basis focused on knots'. The work of YY is supported by the Grant-in Aid for Scientific Research (no. 19540304 and no. 19540098) from the Japan Ministry of Education. The work of TO is supported by the Grant-in Aid for Scientific Research (no. 18540285 and no. 19540304) from the Japan Ministry of Education.

Appendix A. Generating function of $\boldsymbol{K}_{a b}^{(j)}$
In this appendix, we rederive the expression of the generating function of $K^{(j)}$ directly from the definition (2.13).

A.1. Auxiliary operators

It is convenient to introduce auxiliary fermionic creation/annihilation operators:

$$
\begin{equation*}
\bar{\psi}^{a}, \quad \psi_{a}, \quad a=1,2, \ldots, D \tag{A.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\{\psi_{a}, \psi_{b}\right\}=0, \quad\left\{\bar{\psi}^{a}, \bar{\psi}^{b}\right\}=0, \quad\left\{\psi_{a}, \bar{\psi}^{b}\right\}=\delta_{a}^{b} \tag{A.2}
\end{equation*}
$$

Also let

$$
\begin{align*}
& \bar{\psi}_{a}:=g_{a b} \bar{\psi}^{b}, \tag{A.3}\\
& \left\{\psi_{a}, \bar{\psi}_{b}\right\}=g_{a b}, \quad\left\{g^{a b} \psi_{b},\right. \tag{A.4}\\
& \left., \bar{\psi}^{b}\right\}=g^{a b}
\end{align*}
$$

The Fock vacuum is defined by

$$
\begin{equation*}
\psi_{a}|0\rangle=0, \quad\langle 0| \bar{\psi}^{a}=0, \quad a=1,2, \ldots, D, \tag{A.5}
\end{equation*}
$$

with a normalization

$$
\begin{equation*}
\langle 0 \mid 0\rangle=1 . \tag{A.6}
\end{equation*}
$$

With a 2-form h

$$
\begin{equation*}
h=\frac{1}{2} h_{a b} \mathrm{~d} x^{a} \wedge \mathrm{~d} x^{b}, \tag{A.7}
\end{equation*}
$$

let us associate the following operators:

$$
\begin{align*}
h_{\bar{\psi}} & :=\frac{1}{2} h_{a b} \bar{\psi}^{a} \bar{\psi}^{b}, \tag{A.8}\\
h_{\psi} & :=\frac{1}{2} h^{a b} \psi_{a} \psi_{b} . \tag{A.9}
\end{align*}
$$

Note that

$$
\begin{align*}
& \left(h_{\bar{\psi}}\right)^{j}=\frac{1}{(2 j)!} h_{a_{1} \ldots a_{2 j}}^{(j)} \bar{\psi}^{a_{1}} \cdots \bar{\psi}^{a_{2 j}} . \tag{A.10}\\
& h_{a_{1} \ldots a_{2 j}}^{(j)}=\langle 0| \psi_{a_{2 j}} \cdots \psi_{a_{1}}\left(h_{\bar{\psi}}\right)^{j}|0\rangle=(-1)^{j}\langle 0| \psi_{a_{1}} \cdots \psi_{a_{2 j}}\left(h_{\bar{\psi}}\right)^{j}|0\rangle . \tag{A.11}
\end{align*}
$$

A.2. The generating function of $A^{(j)}$

Let
$A^{(j)}:=\frac{1}{(2 j)!(j!)^{2}}\left(h_{c_{1} \ldots c_{2 j}}^{(j)} h^{(j) c_{1} \ldots c_{2 j}}\right)=\frac{(2 j)!}{\left(2^{j} j!\right)^{2}} h^{\left[a_{1} b_{1}\right.} \cdots h^{\left.a_{j} b_{j}\right]} h_{\left[a_{1} b_{1}\right.} \cdots h_{\left.a_{j} b_{j}\right]}$.
$A^{(j)}$ is nontrivial for $j=0,1, \ldots,[D / 2]$.
Note that

$$
\begin{align*}
A^{(j)} & =\frac{1}{(2 j)!(j!)^{2}} h_{c_{1} \ldots c_{2 j}}^{(j)} h^{(j) c_{1} \ldots c_{2 j}} \\
& =\frac{1}{(2 j)!(j!)^{2}} h^{(j) c_{1} \ldots c_{2 j}} \times(-1)^{j}\langle 0| \psi_{c_{1}} \cdots \psi_{c_{2 j}}\left(h_{\bar{\psi}}\right)^{j}|0\rangle \\
& =(-1)^{j}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle . \tag{A.13}
\end{align*}
$$

Then we have

$$
\begin{equation*}
\sum_{j=0}^{[D / 2]} A^{(j)} \beta^{j}=\langle 0| \mathrm{e}^{-\sqrt{\beta} h_{\psi}} \mathrm{e}^{\sqrt{\beta} h_{\mathbb{\psi}}}|0\rangle . \tag{A.14}
\end{equation*}
$$

Let us introduce the vielbein

$$
\begin{equation*}
g_{a b}=\delta_{i j} e^{i}{ }_{a} e^{j}{ }_{b} . \tag{A.15}
\end{equation*}
$$

(We assume the Euclidean signature.)
Let E be the matrix with elements

$$
\begin{equation*}
E_{a}^{i}=e_{a}^{i} . \tag{A.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
H^{a}{ }_{b}=\left(E^{-1}\right)^{a}{ }_{i} \tilde{H}_{i j} E^{j}{ }_{b}, \quad \tilde{H}_{i j}=-\tilde{H}_{j i} \tag{A.17}
\end{equation*}
$$

Also let

$$
\begin{equation*}
\theta^{i}=e^{i}{ }_{a} \psi^{a}, \quad \bar{\theta}^{i}=e^{i}{ }_{a} \bar{\psi}^{a}, \quad i=1,2, \ldots, D . \tag{A.18}
\end{equation*}
$$

Then we have $\theta_{i}=\theta^{i}, \bar{\theta}_{i}=\bar{\theta}^{i}$, and

$$
\begin{equation*}
\left\{\theta_{i}, \theta_{j}\right\}=0, \quad\left\{\bar{\theta}_{i}, \bar{\theta}_{j}\right\}=0, \quad\left\{\theta_{i}, \bar{\theta}_{j}\right\}=\delta_{i j} \tag{A.19}
\end{equation*}
$$

for $i, j=1,2, \ldots, D$. It is well known that any real antisymmetric matrix can be block diagonalized by some orthogonal matrix. Therefore, we can choose the vielbein such that \tilde{H} has a block diagonal form and

$$
\begin{equation*}
h_{\psi}=\sum_{\mu=1}^{n} \lambda_{\mu} \theta_{\mu} \theta_{n+\mu}, \quad h_{\bar{\psi}}=\sum_{\mu=1}^{n} \lambda_{\mu} \bar{\theta}_{\mu} \bar{\theta}_{n+\mu} \tag{A.20}
\end{equation*}
$$

for $n=[D / 2]$. Here we assume that $\lambda_{\mu} \neq 0$. Note that

$$
\begin{equation*}
E Q E^{-1}=\operatorname{diag}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}, \lambda_{1}^{2}, \lambda_{2}^{2}, \ldots\right) \tag{A.21}
\end{equation*}
$$

For odd D, the last diagonal entry equals zero.
Then

$$
\begin{align*}
&\langle 0| \mathrm{e}^{-\sqrt{\beta} h_{\psi}} \mathrm{e}^{\sqrt{\beta} h_{\bar{\psi}}}|0\rangle=\langle 0| \prod_{\mu=1}^{n}\left(1-\sqrt{\beta} \lambda_{\mu} \theta_{\mu} \theta_{n+\mu}\right)\left(1+\sqrt{\beta} \lambda_{\mu} \bar{\theta}_{\mu} \bar{\theta}_{n+\mu}\right)|0\rangle \\
&=\prod_{\mu=1}^{n}\left(1+\beta \lambda_{\mu}^{2}\right) \\
&=\operatorname{det}^{1 / 2}(I+\beta Q) . \tag{A.22}
\end{align*}
$$

Here I is the $D \times D$ identity matrix.
We have the generating function of $A^{(j)}$:

$$
\begin{equation*}
\sum_{j=0}^{[D / 2]} A^{(j)} \beta^{j}=\operatorname{det}^{1 / 2}(I+\beta Q)=\operatorname{det}(I+\sqrt{\beta} H)=\operatorname{det}(I-\sqrt{\beta} H) \tag{A.23}
\end{equation*}
$$

A.3. Recursion relations for $K^{(j)}$

The Levi-Civita tensor satisfies

$$
\begin{equation*}
\varepsilon^{a_{1} \ldots a_{r} c_{1} \ldots c_{D-r}} \varepsilon_{b_{1} \ldots b_{r} c_{1} \ldots c_{D-r}}=r!(D-r)!\delta_{b_{1}}^{\left[a_{1}\right.} \cdots \delta_{b_{r}}^{\left.a_{r}\right]} \tag{A.24}
\end{equation*}
$$

Using (A.24), we can check that $K_{a b}^{(j)}$ has the following form:

$$
\begin{equation*}
K_{a b}^{(j)}=A^{(j)} g_{a b}+\frac{1}{(2 j-1)!(j!)^{2}} h_{a c_{1} \ldots c_{2 j-1}}^{(j)} h^{(j) c_{1} \ldots c_{2 j-1}}{ }_{b} . \tag{A.25}
\end{equation*}
$$

Here $A^{(j)}$ is defined by (A.12).
It is possible to show that

$$
\begin{equation*}
\frac{1}{(2 j-1)!(j!)^{2}} h_{a c_{1} \ldots c_{2 j-1}}^{(j)} h^{(j) c_{1} \ldots c_{2 j-1}}{ }_{b}=h_{a}{ }^{c} K_{c d}^{(j-1)} h_{b}^{d} . \tag{A.26}
\end{equation*}
$$

In the matrix notation, $K^{(j)}$ satisfies the following recursion relation:

$$
\begin{equation*}
K^{(j)}=A^{(j)} I+H K^{(j-1)} H \tag{A.27}
\end{equation*}
$$

Therefore, we can see that $K^{(j)}$ commutes with H. Thus

$$
\begin{equation*}
K^{(j)}=A^{(j)} I-Q K^{(j-1)} \tag{A.28}
\end{equation*}
$$

With the initial condition

$$
\begin{equation*}
K^{(0)}=I, \quad K_{a b}^{(0)}=g_{a b} \tag{A.29}
\end{equation*}
$$

we easily find that

$$
\begin{equation*}
K^{(j)}=\sum_{l=0}^{j}(-1)^{l} A^{(j-l)} Q^{l} \tag{A.30}
\end{equation*}
$$

or

$$
\begin{equation*}
K^{(j) a}{ }_{b}=\sum_{l=0}^{j}(-1)^{l} A^{(j-l)}\left(Q^{l}\right)^{a}{ }_{b} . \tag{A.31}
\end{equation*}
$$

We immediately see that

$$
\begin{equation*}
K^{(i)} K^{(j)}=K^{(j)} K^{(i)} \tag{A.32}
\end{equation*}
$$

Using (A.23), we can see that $K^{(k)}=0$ for $k=[(D+1) / 2]$. Indeed, by setting $\beta=-x^{-1}$,

$$
\begin{equation*}
\sum_{j=0}^{[D / 2]}(-1)^{j} A^{(j)} x^{-j}=\operatorname{det}^{1 / 2}\left(I-x^{-1} Q\right)=x^{-D / 2} \operatorname{det}^{1 / 2}(x I-Q) \tag{A.33}
\end{equation*}
$$

For $D=2 k$,

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{k-j} A^{(j)} x^{k-j}=(-1)^{k} \operatorname{det}^{1 / 2}(x I-Q) \tag{A.34}
\end{equation*}
$$

If we set x to be an eigenvalue of Q, the RHS becomes zero. Therefore, we can see that

$$
\begin{equation*}
K^{(k)}=\sum_{l=0}^{k}(-1)^{l} A^{(k-l)} Q^{l}=0, \quad \text { for } \quad D=2 k \tag{A.35}
\end{equation*}
$$

Similarly, for $D=2 k-1$,

$$
\begin{equation*}
\sum_{j=0}^{k-1}(-1)^{k-j} A^{(j)} x^{k-j}=(-1)^{k} x^{1 / 2} \operatorname{det}^{1 / 2}(x I-Q) \tag{A.36}
\end{equation*}
$$

Thus

$$
\begin{equation*}
K^{(k)}=\sum_{l=1}^{k}(-1)^{l} A^{(k-l)} Q^{l}=0, \quad \text { for } \quad D=2 k-1 \tag{A.37}
\end{equation*}
$$

Also note that $A^{(j)}=0$ for $j \geqslant[D / 2]+1$. Therefore the recursion relations (A.28) become trivial for $j \geqslant k+1$ and $K_{a b}^{(j)}=0$ for $j \geqslant k . K^{(j)}$ can be written as (A.30) for all $j \geqslant 0$ but are nontrivial only for $j=0,1, \ldots, k-1$.

Using (A.30) and (A.23), we can see that the generating function of $K^{(j)}$ is

$$
\begin{equation*}
K(\beta):=\sum_{j=0}^{k-1} K^{(j)} \beta^{j}=\operatorname{det}^{1 / 2}(I+\beta Q)(I+\beta Q)^{-1} \tag{A.38}
\end{equation*}
$$

A.4. Proof of (A.26)

The LHS of (A.26) is

$$
\begin{align*}
& \frac{1}{(2 j-1)!(j!)^{2}} h_{a c_{1} \ldots c_{2 j-1}}^{(j)} h^{(j) c_{1} \ldots c_{2 j-1}}{ }_{b} \\
&=\frac{1}{(2 j-1)!(j!)^{2}} h^{(j) c_{1} \ldots c_{2 j-1}}{ }_{b} \times(-1)^{j}\langle 0| \psi_{a} \psi_{c_{1}} \cdots \psi_{c_{2 j-1}}\left(h_{\bar{\psi}}\right)^{j}|0\rangle \\
&=\frac{(-1)^{j-1}}{(2 j-1)!(j!)^{2}} h^{(j) c_{1} \ldots c_{2 j-1}}{ }_{b}\langle 0| \psi_{c_{1}} \cdots \psi_{c_{2 j-1}} \psi_{a}\left(h_{\bar{\psi}}\right)^{j}|0\rangle \\
&=\frac{(-1)^{j-1}}{(2 j)!(j!)^{2}} h^{(j) c_{1} \ldots c_{2 j}}\langle 0| \psi_{c_{1}} \cdots \psi_{c_{2 j}} \bar{\psi}_{b} \psi_{a}\left(h_{\bar{\psi}}\right)^{j}|0\rangle \\
& \quad=(-1)^{j-1}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \bar{\psi}_{b} \psi_{a} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle . \tag{A.39}
\end{align*}
$$

Then

$$
\begin{gather*}
K_{a b}^{(j)}=(-1)^{j} g_{a b}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle-(-1)^{j}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \bar{\psi}_{b} \psi_{a} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle \\
=(-1)^{j}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!}\left[\left\{\psi_{a}, \bar{\psi}_{b}\right\}-\bar{\psi}_{b} \psi_{a}\right] \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle \\
=(-1)^{j}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \psi_{a} \bar{\psi}_{b} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle . \tag{A.40}
\end{gather*}
$$

Thus

$$
\begin{equation*}
K_{a b}^{(j)}=(-1)^{j}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \psi_{a} \bar{\psi}_{b} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle . \tag{A.41}
\end{equation*}
$$

Note that

$$
\begin{align*}
& {\left[\psi_{a}, h_{\bar{\psi}}\right]=h_{a a^{\prime}} \bar{\psi}^{a^{\prime}},} \tag{A.42}\\
& \psi_{a}\left(h_{\bar{\psi}}\right)^{j}|0\rangle=j{h_{a}}^{a^{\prime}} \bar{\psi}_{a^{\prime}}\left(h_{\bar{\psi}}\right)^{j-1}|0\rangle, \tag{A.43}\\
& {\left[h_{\psi}, \bar{\psi}_{b}\right]=\psi_{b^{\prime}} h_{b}^{b^{\prime}},} \tag{A.44}\\
& \langle 0|\left(h_{\psi}\right)^{j} \bar{\psi}_{b}=j\langle 0|\left(h_{\psi}\right)^{j-1} \psi_{b^{\prime}} h_{b}^{b^{\prime}} . \tag{A.45}
\end{align*}
$$

Then

$$
\begin{align*}
(\text { LHS of }(\mathrm{A} .26)) & =\frac{1}{(2 j-1)!(j!)^{2}} h_{a c_{1} \ldots c_{2 j-1}}^{(j)} h^{(j) c_{1} \ldots c_{2 j-1}}{ }_{b} \\
& =(-1)^{j-1}\langle 0| \frac{\left(h_{\psi}\right)^{j}}{j!} \bar{\psi}_{b} \psi_{a} \frac{\left(h_{\bar{\psi}}\right)^{j}}{j!}|0\rangle \\
& =h_{a} a^{a^{\prime}}(-1)^{j-1}\langle 0| \frac{\left(h_{\psi}\right)^{j-1}}{(j-1)!} \psi_{b^{\prime}} \bar{\psi}_{a^{\prime}} \frac{\left(h_{\bar{\psi}}\right)^{j-1}}{(j-1)!}|0\rangle h^{b^{\prime}}{ }_{b} \\
& =h_{a}{ }^{a^{\prime}} K_{a^{\prime} b^{\prime}}^{(j-1)} h^{b^{\prime}}{ }_{b} \\
& =(\operatorname{RHS} \text { of }(\mathrm{A} .26)) . \tag{A.46}
\end{align*}
$$

This completes the proof of (A.26).

References

[1] Frolov V P and Kubizňák D 2007 Hidden symmetries of higher dimensional rotating black holes Phys. Rev. Lett. 9811101 (Preprint gr-qc/0605058)
[2] Kubizňák D and Frolov V P 2007 Hidden symmetry of higher dimensional Kerr-NUT-AdS spacetimes Class. Quantum Grav. 24 F1-6 (Preprint gr-qc/0610144)
[3] Page D N, Kubizňák D, Vasudevan M and Krtouš P 2007 Complete integrability of geodesic motion in general Kerr-NUT-AdS spacetimes Phys. Rev. Lett. 98061102 (Preprint hep-th/0611083)
[4] Frolov V P, Krtouš P and Kubizňák D 2007 Separability of Hamilton-Jacobi and Klein-Gordon equations in general Kerr-NUT-AdS spacetimes J. High Energy Phys. JHEP02(2007)005 (Preprint hep-th/0611245)
[5] Krtouš P, Kubizǎák D, Page D N and Frolov V P 2007 Killing-Yano tensors, rank-2 killing tensors, and conserved quantities in higher dimensions J. High Energy Phys. JHEP02(2007)004 (Preprint hep-th/0612029)
[6] Krtouš P, Kubizňák D, Page D N and Vasudevan M 2007 Constants of geodesic motion in higher-dimensional black-hole spacetime Preprint 0707.0001v1
[7] Benenti S and Francaviglia M 1979 Remarks on certain separability structures and their applications to general relativity Gen. Rel. Grav. 10 79-92
[8] Kalnins E G and Miller W Jr 1981 Killing tensors and nonorthogonal variable separation for Hamiltonian-Jacobi equations SIAM J. Math. Anal. 12 617-29
[9] Benenti S 1991 Separation of variables in the geodesic Hamilton-Jacobi equation Progress in Mathematics vol 99 (Basle: Birkhäuser) pp 1-36
[10] Tachibana S 1969 On conformal Killing tensor in a Riemannian space Tôhoku Math. J. 21 56-64
[11] Demiański M and Francaviglia M 1981 Type-D space-times with a Killing tensor J. Phys. A: Math. Gen. 14 173-9
[12] Dietz W and Rüdiger R 1981 Space-time admitting Killing-Yano tensors: I Proc. R. Soc. Lond. A 375 361-78 Dietz W and Rüdiger R 1982 Space-time admitting Killing-Yano tensors: II Proc. R. Soc. Lond. A 381 315-22
[13] Chen W, Lü H and Pope C N 2006 General Kerr-NUT-AdS metrics in all dimensions Class. Quantum Grav. 23 5323-40 (Preprint hep-th/0604125)
[14] Hamamoto N, Houri T, Oota T and Yasui Y 2007 Kerr-NUT-de Sitter curvature in all dimensions J. Phys. A: Math. Gen. 40 F177-84 (Preprint hep-th/0611285)
[15] Houri T, Oota T and Yasui Y 2007 Closed conformal Killing-Yano tensor and Kerr-NUT-de Sitter space-time uniqueness Phys. Lett. B 656 214-6 (Preprint 0708.1368)

[^0]: ${ }^{1}$ We put $n_{2}=0$ for theorem 4 in [8]. This condition is satisfied in the case of a positive definite metric g.

