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Abstract
Assuming the existence of a single rank-2 closed conformal Killing–Yano
tensor with a certain symmetry we show that there exists mutually commuting
rank-2 Killing tensors and Killing vectors. We also discuss the condition of
separation of variables for the geodesic Hamilton–Jacobi equations.

PACS numbers: 02.40.Ky, 04.70.Bw

1. Introduction

Recently, it has been shown that the geodesic motion in the Kerr–NUT–de Sitter spacetime
is integrable for all dimensions [1–6]. Indeed, the constants of motion that are in involution
can be explicitly constructed from a rank-2 closed conformal Killing–Yano (CKY) tensor.
In this paper, we answer the question raised in [5] under which general assumptions a CKY
tensor implies the complete integrability of geodesic equation. We assume the existence of
a single rank-2 closed CKY tensor with a certain symmetry for the D-dimensional spacetime
M with a metric g. It turns out that such a spacetime admits mutually commuting k rank-2
Killing tensors and k Killing vectors. Here we put D = 2k for even D, and D = 2k − 1
for odd D. Although the existence of the commuting Killing tensors was shown in [5, 6], we
reproduce it more directly. We also discuss the condition of separation of variables for the
geodesic Hamilton–Jacobi equations using the result given by Benenti–Francaviglia [7] and
Kalnins–Miller [8] (see also [9]).

2. Assumptions and main results

A two-form

h = 1
2hab dxa ∧ dxb, hab = −hba (2.1)
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is called a conformal Killing–Yano (CKY) tensor if it satisfies

∇ahbc + ∇bhac = 2ξcgab − ξagbc − ξbgac. (2.2)

The vector field ξa is called the associated vector of hab, which is given by

ξa = 1

D − 1
∇bhba. (2.3)

In the following we assume

(a1) dh = 0, (a2) Lξ g = 0, (a3) Lξh = 0. (2.4)

Assumption (a1) means that (D − 2)-form f = ∗h is a Killing–Yano (KY) tensor,

∇(a1fa2)a3···aD−1 = 0. (2.5)

Note that equation (2.2) together with (a1) is equivalent to

∇ahbc = ξcgab − ξbgac. (2.6)

It was shown in [10] that the associated vector ξ satisfies

∇aξb + ∇bξa = 1

D − 2

(
Ra

chbc + Rb
chac

)
, (2.7)

where Rab is a Ricci tensor. If M is Einstein, i.e. Rab = �gab, then

∇aξb + ∇bξa = 0. (2.8)

Thus, any Einstein space satisfies assumption (a2) [10]. According to [5], we define 2j -forms
h(j) (j = 0, . . . , k − 1):

h(j) = h ∧ h ∧ · · · ∧ h︸ ︷︷ ︸
j

= 1

(2j)!
h(j)

a1...a2j
dxa1 ∧ · · · ∧ dxa2j , (2.9)

where the components are written as

h(j)
a1...a2j

= (2j)!

2j
h[a1a2ha3a4 · · · ha2j−1a2j ]. (2.10)

Since the wedge product of the two CKY tensors is again a CKY tensor [5], h(j) are closed
CKY tensors, and so f (j) = ∗h(j) are KY tensors. Explicitly, we have

f (j) = ∗h(j) = 1

(D − 2j)!
f (j)

a1...aD−2j
dxa1 ∧ · · · ∧ dxaD−2j , (2.11)

where

f (j)
a1...aD−2j

= 1

(2j)!
εb1...b2j

a1...aD−2j
h

(j)

b1...b2j
. (2.12)

Given these KY tensors, we can construct the rank-2 Killing tensors K(j) obeying the equation
∇(aK

(j)

bc) = 0:

K
(j)

ab = 1

(D − 2j − 1)!(j !)2
f (j)

ac1...cD−2j−1
f

(j)c1...cD−2j−1

b . (2.13)

From (a2) we have Lξ ∗h(j) = ∗Lξh
(j) and hence assumption (a3) yields

Lξh
(j) = 0, Lξ f

(j) = 0, LξK
(j) = 0. (2.14)

We also immediately obtain from (2.6)

∇ξh
(j) = 0, ∇ξ f

(j) = 0, ∇ξK
(j) = 0. (2.15)
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Let us define the vector fields η(j) by [11, 12]

η(j)
a = K(j)

a
bξb. (2.16)

Then we have

∇(aη
(j)

b) = 1
2LξK

(j)

ab − ∇ξK
(j)

ab , (2.17)

which vanishes by (2.14) and (2.15), i.e. η(j) are Killing vectors.
Theorem 1 was proved in [5, 6].

Theorem 1. Under (a1) Killing tensors K(i) are mutually commuting,

[K(i),K(j)]S = 0.

The bracket [, ]S represents a symmetric Schouten bracket. The equation can be written as

K
(i)

d(a∇dK
(j)

bc) − K
(j)

d(a∇dK
(i)

bc) = 0. (2.18)

Adding assumptions (a2) and (a3) we prove

Theorem 2.

Lη(i)h = 0.

Corollary. Killing vectors η(i) and Killing tensors K(j) are mutually commuting,

[η(i), K(j)]S = 0, [η(i), η(j)] = 0.

3. Proof of theorems 1, 2

Let H,Q := −H 2,K(j) be matrices with elements

Ha
b = ha

b, Qa
b = −ha

ch
c
b, (K(j))ab = K(j)a

b. (3.1)

The generating function of K(j) can be read off from [5]

Kab(β) =
k−1∑
j=0

K
(j)

ab βj = det1/2(I + βQ)[(I + βQ)−1]ab. (3.2)

Here k = [(D + 1)/2]. Note that

2 det1/2(I + βQ)[(I + βQ)−1]ab

= det(I +
√

βH)[(I +
√

βH)−1]ab + det(I −
√

βH)[(I −
√

βH)−1]ab. (3.3)

Since det(I ± √
βH)[(I ± √

βH)−1]ab is a cofactor of the matrix I ± √
βH , (3.2) is indeed

a polynomial of β of degree [(D − 1)/2].
For simplicity, let us define a matrix S(β) by

S(β) := (I + βQ)−1. (3.4)

Using (2.6), we have

∇a det1/2(I + βQ) = −2βξd [HS(β)]da det1/2(I + βQ), (3.5)

∇aSbc(β) = βSba(β)ξd [HS(β)]dc − βSbd(β)ξd [HS(β)]ac

+ β[HS(β)]baξ
dSdc(β) − β[HS(β)]bdξ

dSac(β). (3.6)
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Combining these relations, we have

∇aKbc(β) = det1/2(I + βQ)ξdXabc;d(β), (3.7)

where

Xabc;d(β) = 2β[HS(β)]adSbc(β) − β[HS(β)]bdSca(β) − β[HS(β)]cdSab(β)

+ βSbd(β)[HS(β)]ca + βScd(β)[HS(β)]ba. (3.8)

Then with the help of (3.7), it is easy to check that the following relations hold:

∇(aKbc)(β) = 0. (3.9)

Therefore we have

∇(aK
(j)

bc) = 0. (3.10)

Proof of theorem 1. In terms of generating function, theorem 1 (2.18) can be written as
follows:

Ke(a(β1)∇eKbc)(β2) − Ke(a(β2)∇eKbc)(β1) = 0. (3.11)

Let

Fabc(β1, β2) := Kea(β1)∇eKbc(β2)

det1/2(I + β1Q) det1/2(I + β2Q)
. (3.12)

(3.11) is equivalent to

F(abc)(β1, β2) − F(abc)(β2, β1) = 0. (3.13)

Using the explicit form of ∇eKbc(β2), we have

Fabc(β1, β2) = β2ξ
dSea(β1)

× (
2[HS(β2)]edSbc(β2) − [HS(β2)]bdSc

e(β2) − [HS(β2)]cdS
e
b(β2)

+ Sbd(β2)[HS(β2)]c
e + Scd(β2)[HS(β2)]b

e
)

= β2ξ
d
(
2[HS(β1)S(β2)]adSbc(β2)

− [HS(β2)]bd [S(β1)S(β2)]ca − [HS(β2)]cd [S(β1)S(β2)]ab

+ Sbd(β2)[HS(β1)S(β2)]ca + Scd(β2)[HS(β1)S(β2)]ba

)
. (3.14)

Then

F(abc)(β1, β2) = 2β2ξ
d(S(bc(β2)[HS(β1)S(β2)]a)d − [S(β1)S(β2)](bc[HS(β2)]a)d). (3.15)

Note that

β2S(β2) − β1S(β1) = (β2 − β1)S(β1)S(β2). (3.16)

Then

F(abc)(β1, β2) − F(abc)(β2, β1) = 2(β2 − β1)ξ
d([S(β1)S(β2)](bc[HS(β1)S(β2)]a)d

− [S(β1)S(β2)](bc[HS(β1)S(β2)]a)d)

= 0.

This completes the proof of theorem 1. �

Let ηa(β) be the generating function of η
(j)
a :

ηa(β) =
k−1∑
j=0

η(j)
a βj = Kab(β)ξb. (3.17)
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Proof of theorem 2. In terms of the generating function (3.17), the theorem 2 is equivalent to

Lη(β)hab = 0. (3.18)

The left-hand side is

Lη(β)hab = ηc(β)∇chab + hcb∇aη
c(β) + hac∇bη

c(β). (3.19)

Using (2.6), the first term on the right-hand side of (3.19) becomes

ηc(β)∇chab = ξbηa(β) − ξaηb(β). (3.20)

Let us examine the second and third terms.

Uab(β) : = hcb∇aη
c(β) + hac∇bη

c(β)

= hcb∇a

(
Kc

d(β)ξd
)

+ hac∇b

(
Kc

d(β)ξd
)

= [K(β)H ]db∇aξ
d + [K(β)H ]ad∇bξ

d + ξd
(
hcb∇aK

c
d(β) + hac∇bK

c
d(β)

)
. (3.21)

Note that

[K(β)H ]db∇aξ
d + [K(β)H ]ad∇bξ

d = Lξ [K(β)H ]ab − ∇ξ [K(β)H ]ab = 0. (3.22)

Here we have used (2.14) and (2.15).
Let

Vab(β) := ξdhac∇bK
c
d(β)

det1/2(I + βQ)
. (3.23)

Then

Uab(β) = det1/2(I + βQ)(Vab(β) − Vba(β)) = 2 det1/2(I + βQ)V[ab](β). (3.24)

Using (3.7), we have

Vab(β) = βξdξf {[HS(β)]ad [HS(β)]bf − Sdf [QS(β)]ab + [QS(β)]adSbf (β)}, (3.25)

2V[ab](β) = βξdξf {[QS(β)]adSbf (β) − Sad(β)[QS(β)]bf }. (3.26)

Note that

βQS(β) = I − S(β). (3.27)

Then

2V[ab](β) = βξdξf {gadSbf (β) − Sad(β)gbf } = ξaSbf (β)ξf − ξbSad(β)ξd . (3.28)

Therefore

Uab(β) = ξaηb(β) − ξbηa(β). (3.29)

Adding (3.20) and (3.29), we have

Lη(β)hab = 0. (3.30)

This completes the proof of theorem 2. �

The first relation of corollary is equivalent to

Lη(i)K(j) = 0, (3.31)

which immediately follows from theorem 2.
The second relation of corollary is equivalent to

Lη(i)η(j) = 0. (3.32)

5
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Note that

Lξ ξ = [ξ, ξ ] = 0, (3.33)

Lξ η
(j)a = Lξ

(
K(j)a

bξ
b
)

= (
LξK

(j)a
b

)
ξb + K(j)a

b(Lξ ξ
b)

= 0. (3.34)

Here we have used (2.14) and (3.33). Then

Lη(j) ξ = [η(j), ξ ] = −Lξ η
(j) = 0. (3.35)

Now, using this relation and (3.31), we easily see that

Lη(i)η(j)a = Lη(i)

(
K(j)a

bξ
b
)

= (
Lη(i)K(j)a

b

)
ξb + K(j)a

b(Lη(i) ξ b)

= 0. (3.36)

This completes the proof of corollary.

4. Separation of variables in the Hamilton–Jacobi equation

A geometric characterization of the separation of variables in the geodesic Hamilton–Jacobi
equation was given by Benenti–Francaviglia [7] and Kalnins–Miller [8]. Here, we use the
following result in [8].

Theorem. Suppose there exists a N-dimensional vector space A of rank-2 Killing tensors on
D-dimensional space (M, g). Then the geodesic Hamilton–Jacobi equation has a separable
coordinate system if and only if the following conditions hold1:

(i) [A,B]S = 0 for each A,B ∈ A.
(ii) There exist (D − n)-independent simultaneous eigenvectors X(a) for every A ∈ A.

(iii) There exist n-independent commuting Killing vectors Y (α).
(iv) [A, Y (α)]S = 0 for each A ∈ A.
(v) N = (2D + n2 − n)/2.

(vi) g(X(a), X(b)) = 0 if 1 � a < b � D − n, and g(X(a), Y (α)) = 0 for 1 � a � D − n,

D − n + 1 � α � D.

We assume that the Killing tensors K(j) and K(ij) = η(i) ⊗ η(j) + η(j) ⊗ η(i) given in
section 2 form a basis for A. Note that in the odd-dimensional case the last Killing Yano tensor
f (k−1) is a Killing vector, and hence the corresponding Killing tensor K(k−1) ∝ f (k−1)f (k−1)

is reducible [5]. Then, it is easy to see that conditions (1)–(6) hold. Indeed, the relation
K(i)K(j) = K(j)K(i) implies that there exist simultaneous eigenvectors X(a) for K(i) satisfying
conditions (2) and (6). Other conditions are direct consequences of theorem 1 and corollary.

5. Example

Finally, we describe the Kerr–NUT–de Sitter metric as an example, which was fully studied
in [1–6, 13, 14]. The D-dimensional metric takes the form [13]:

1 We put n2 = 0 for theorem 4 in [8]. This condition is satisfied in the case of a positive definite metric g.
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(a) D = 2n

g =
n∑

µ=1

dx2
µ

Qµ

+
n∑

µ=1

Qµ

(
n−1∑
k=0

A(k)
µ dψk

)2

. (5.1)

(b) D = 2n + 1

g =
n∑

µ=1

dx2
µ

Qµ

+
n∑

µ=1

Qµ

(
n−1∑
k=0

A(k)
µ dψk

)2

+ S

(
n∑

k=0

A(k) dψk

)2

. (5.2)

The functions Qµ are given by

Qµ = Xµ

Uµ

, Uµ =
n∏

ν=1
(ν �=µ)

(
x2

µ − x2
ν

)
, (5.3)

where Xµ is a function depending only on xµ and

A(k)
µ =

∑
1�ν1<···<νk�n

(νi �=µ)

x2
ν1

x2
ν2

· · · x2
νk

, A(k) =
∑

1�ν1<···<νk�n

x2
ν1

x2
ν2

· · · x2
νk

, S = c

A(n)
(5.4)

with a constant c. The CKY tensor is written as [2]

h = 1

2

n−1∑
k=0

dA(k+1) ∧ dψk (5.5)

with the associated vector ξ = ∂/∂ψ0. Assumptions (a1), (a2) and (a3) are clearly satisfied.
The commuting Killing tensors K(j) and Killing vectors η(j) are calculated as [2, 3]

K(j) =
n∑

µ=1

A(j)
µ (eµ eµ + eµ+n eµ+n) + εA(j)e2n+1 e2n+1, (5.6)

η(j) = ∂

∂ψj

, (5.7)

where ε = 0 for D = 2n and 1 for D = 2n + 1. The 1-forms {eµ, eµ+n, e2n+1} are orthonormal
bases defined by

eµ = dxµ√
Qµ

, eµ+n = √
Qµ

(
n−1∑
k=0

A(k)
µ dψk

)
, e2n+1 =

√
S

(
n∑

k=0

A(k) dψk

)
. (5.8)

Note added. In the successive paper [15], we found that a single CKY tensor satisfying assumptions (a1), (a2) and
(a3) leads inevitably to the Kerr–NUT–de Sitter spacetime.
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Appendix A. Generating function of K
(j)
ab

In this appendix, we rederive the expression of the generating function of K(j) directly from
the definition (2.13).

A.1. Auxiliary operators

It is convenient to introduce auxiliary fermionic creation/annihilation operators:

ψ̄a, ψa, a = 1, 2, . . . , D (A.1)

such that

{ψa,ψb} = 0, {ψ̄a, ψ̄b} = 0, {ψa, ψ̄
b} = δb

a . (A.2)

Also let

ψ̄a := gabψ̄
b, ψa := gabψb. (A.3)

{ψa, ψ̄b} = gab, {ψa, ψ̄b} = gab. (A.4)

The Fock vacuum is defined by

ψa|0〉 = 0, 〈0|ψ̄a = 0, a = 1, 2, . . . ,D, (A.5)

with a normalization

〈0|0〉 = 1. (A.6)

With a 2-form h

h = 1
2hab dxa ∧ dxb, (A.7)

let us associate the following operators:

hψ̄ := 1
2habψ̄

aψ̄b, (A.8)

hψ := 1
2habψaψb. (A.9)

Note that

(hψ̄ )j = 1

(2j)!
h(j)

a1...a2j
ψ̄a1 · · · ψ̄a2j . (A.10)

h(j)
a1...a2j

= 〈0|ψa2j
· · ·ψa1(hψ̄ )j |0〉 = (−1)j 〈0|ψa1 · · · ψa2j

(hψ̄ )j |0〉. (A.11)

A.2. The generating function of A(j)

Let

A(j) := 1

(2j)!(j !)2

(
h(j)

c1...c2j
h(j)c1...c2j

) = (2j)!

(2j j !)2
h[a1b1 · · ·haj bj ]h[a1b1 · · · haj bj ]. (A.12)

A(j) is nontrivial for j = 0, 1, . . . , [D/2].
Note that

A(j) = 1

(2j)!(j !)2
h(j)

c1...c2j
h(j)c1...c2j

= 1

(2j)!(j !)2
h(j)c1...c2j × (−1)j 〈0|ψc1 · · · ψc2j

(hψ̄ )j |0〉

= (−1)j 〈0| (hψ)j

j !

(hψ̄ )j

j !
|0〉. (A.13)

8
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Then we have

[D/2]∑
j=0

A(j)βj = 〈0| e−√
βhψ e

√
βhψ̄ |0〉. (A.14)

Let us introduce the vielbein

gab = δij e
i
ae

j
b. (A.15)

(We assume the Euclidean signature.)
Let E be the matrix with elements

Ei
a = ei

a. (A.16)

Then

Ha
b = (E−1)aiH̃ ijE

j
b, H̃ ij = −H̃ ji . (A.17)

Also let

θ i = ei
aψ

a, θ̄ i = ei
aψ̄

a, i = 1, 2, . . . ,D. (A.18)

Then we have θi = θ i, θ̄i = θ̄ i , and

{θi, θj } = 0, {θ̄i , θ̄j } = 0, {θi, θ̄j } = δij , (A.19)

for i, j = 1, 2, . . . , D. It is well known that any real antisymmetric matrix can be block
diagonalized by some orthogonal matrix. Therefore, we can choose the vielbein such that H̃

has a block diagonal form and

hψ =
n∑

µ=1

λµθµθn+µ, hψ̄ =
n∑

µ=1

λµθ̄µθ̄n+µ, (A.20)

for n = [D/2]. Here we assume that λµ �= 0. Note that

EQE−1 = diag
(
λ2

1, λ
2
2, . . . , λ

2
n, λ

2
1, λ

2
2, . . .

)
. (A.21)

For odd D, the last diagonal entry equals zero.
Then

〈0| e−√
βhψ e

√
βhψ̄ |0〉 = 〈0|

n∏
µ=1

(1 −
√

βλµθµθn+µ)(1 +
√

βλµθ̄µθ̄n+µ)|0〉

=
n∏

µ=1

(
1 + βλ2

µ

)
= det1/2(I + βQ). (A.22)

Here I is the D × D identity matrix.
We have the generating function of A(j):

[D/2]∑
j=0

A(j)βj = det1/2(I + βQ) = det(I +
√

βH) = det(I −
√

βH). (A.23)

9
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A.3. Recursion relations for K(j)

The Levi-Civita tensor satisfies

εa1...ar c1...cD−r εb1...br c1...cD−r
= r!(D − r)!δ[a1

b1
· · · δar ]

br
. (A.24)

Using (A.24), we can check that K
(j)

ab has the following form:

K
(j)

ab = A(j)gab +
1

(2j − 1)!(j !)2
h(j)

ac1...c2j−1
h(j)c1...c2j−1

b. (A.25)

Here A(j) is defined by (A.12).
It is possible to show that

1

(2j − 1)!(j !)2
h(j)

ac1...c2j−1
h(j)c1...c2j−1

b = ha
cK

(j−1)

cd hd
b. (A.26)

In the matrix notation, K(j) satisfies the following recursion relation:

K(j) = A(j)I + HK(j−1)H. (A.27)

Therefore, we can see that K(j) commutes with H. Thus

K(j) = A(j)I − QK(j−1). (A.28)

With the initial condition

K(0) = I, K
(0)
ab = gab, (A.29)

we easily find that

K(j) =
j∑

l=0

(−1)lA(j−l)Ql, (A.30)

or

K(j)a
b =

j∑
l=0

(−1)lA(j−l)(Ql)ab. (A.31)

We immediately see that

K(i)K(j) = K(j)K(i). (A.32)

Using (A.23), we can see that K(k) = 0 for k = [(D+1)/2]. Indeed, by setting β = −x−1,
[D/2]∑
j=0

(−1)jA(j)x−j = det1/2(I − x−1Q) = x−D/2 det1/2(xI − Q). (A.33)

For D = 2k,
k∑

j=0

(−1)k−jA(j)xk−j = (−1)k det1/2(xI − Q). (A.34)

If we set x to be an eigenvalue of Q, the RHS becomes zero. Therefore, we can see that

K(k) =
k∑

l=0

(−1)lA(k−l)Ql = 0, for D = 2k. (A.35)

Similarly, for D = 2k − 1,
k−1∑
j=0

(−1)k−jA(j)xk−j = (−1)kx1/2 det1/2(xI − Q). (A.36)
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Thus

K(k) =
k∑

l=1

(−1)lA(k−l)Ql = 0, for D = 2k − 1. (A.37)

Also note that A(j) = 0 for j � [D/2] + 1. Therefore the recursion relations (A.28) become
trivial for j � k + 1 and K

(j)

ab = 0 for j � k. K(j) can be written as (A.30) for all j � 0 but
are nontrivial only for j = 0, 1, . . . , k − 1.

Using (A.30) and (A.23), we can see that the generating function of K(j) is

K(β) :=
k−1∑
j=0

K(j)βj = det1/2(I + βQ)(I + βQ)−1. (A.38)

A.4. Proof of (A.26)

The LHS of (A.26) is

1

(2j − 1)!(j !)2
h(j)

ac1...c2j−1
h(j)c1...c2j−1

b

= 1

(2j − 1)!(j !)2
h(j)c1...c2j−1

b × (−1)j 〈0|ψaψc1 · · ·ψc2j−1(hψ̄ )j |0〉

= (−1)j−1

(2j − 1)!(j !)2
h(j)c1...c2j−1

b〈0|ψc1 · · · ψc2j−1ψa(hψ̄ )j |0〉

= (−1)j−1

(2j)!(j !)2
h(j)c1...c2j 〈0|ψc1 · · ·ψc2j

ψ̄bψa(hψ̄ )j |0〉

= (−1)j−1〈0| (hψ)j

j !
ψ̄bψa

(hψ̄ )j

j !
|0〉. (A.39)

Then

K
(j)

ab = (−1)jgab〈0| (hψ)j

j !

(hψ̄ )j

j !
|0〉 − (−1)j 〈0| (hψ)j

j !
ψ̄bψa

(hψ̄ )j

j !
|0〉

= (−1)j 〈0| (hψ)j

j !
[{ψa, ψ̄b} − ψ̄bψa]

(hψ̄ )j

j !
|0〉

= (−1)j 〈0| (hψ)j

j !
ψaψ̄b

(hψ̄ )j

j !
|0〉. (A.40)

Thus

K
(j)

ab = (−1)j 〈0| (hψ)j

j !
ψaψ̄b

(hψ̄ )j

j !
|0〉. (A.41)

Note that

[ψa, hψ̄ ] = haa′ψ̄a′
, (A.42)

ψa(hψ̄ )j |0〉 = jha
a′
ψ̄a′(hψ̄ )j−1|0〉, (A.43)

[hψ, ψ̄b] = ψb′hb′
b, (A.44)

〈0|(hψ)j ψ̄b = j 〈0|(hψ)j−1ψb′hb′
b. (A.45)
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Then

(LHS of (A.26)) = 1

(2j − 1)!(j !)2
h(j)

ac1...c2j−1
h(j)c1...c2j−1

b

= (−1)j−1〈0| (hψ)j

j !
ψ̄bψa

(hψ̄ )j

j !
|0〉

= ha
a′
(−1)j−1〈0| (hψ)j−1

(j − 1)!
ψb′ψ̄a′

(hψ̄ )j−1

(j − 1)!
|0〉hb′

b

= ha
a′
K

(j−1)

a′b′ hb′
b

= (RHS of (A.26)). (A.46)

This completes the proof of (A.26).
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[10] Tachibana S 1969 On conformal Killing tensor in a Riemannian space Tôhoku Math. J. 21 56–64
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